Modeling Multivariate Distributions Using Copulas: Applications in Marketing

نویسندگان

  • Peter J. Danaher
  • Michael S. Smith
چکیده

In this research we introduce a new class of multivariate probability models to the marketing literature. Known as “copula models”, they have a number of attractive features. First, they permit the combination of any univariate marginal distributions that need not come from the same distributional family. Second, a particular class of copula models, called “elliptical copula”, have the property that they increase in complexity at a much slower rate than existing multivariate probability models as the number of dimensions increase. Third, they are very general, encompassing a number of existing multivariate models, and provide a framework for generating many more. These advantages give copula models a greater potential for use in empirical analysis than existing probability models used in marketing. We exploit and extend recent developments in Bayesian estimation to propose an approach that allows reliable estimation of elliptical copula models in high dimensions. Rather than focusing on a single marketing problem, we demonstrate the versatility and accuracy of copula models with four examples to show the flexibility of the method. In every case, the copula model either handles a situation that could not be modeled previously, or gives improved accuracy compared with prior models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hessian Stochastic Ordering in the Family of multivariate Generalized Hyperbolic Distributions and its Applications

In this paper, random vectors following the multivariate generalized hyperbolic (GH) distribution are compared using the hessian stochastic order. This family includes the classes of symmetric and asymmetric distributions by which different behaviors of kurtosis in skewed and heavy tail data can be captured. By considering some closed convex cones and their duals, we derive some necessary and s...

متن کامل

A flexible and tractable class of one-factor copulas

Copulas are a useful tool to model multivariate distributions. While there exist various families of bivariate copulas, the construction of flexible and yet tractable copulas suitable for high-dimensional applications is much more challenging. This is even more true if one is concerned with the analysis of extreme values. In this paper, we construct a class of one-factor copulas and a family of...

متن کامل

Approximate Uncertainty Modeling in Risk Analysis with Vine Copulas

Many applications of risk analysis require us to jointly model multiple uncertain quantities. Bayesian networks and copulas are two common approaches to modeling joint uncertainties with probability distributions. This article focuses on new methodologies for copulas by developing work of Cooke, Bedford, Kurowica, and others on vines as a way of constructing higher dimensional distributions tha...

متن کامل

Pair-copula constructions of multivariate copulas

The famous Sklar’s theorem (see [54]) allows to build multivariate distributions using a copula and marginal distributions. For the basic theory on copulas see the first chapter ([14]) or the books on copulas by Joe ([32]) and Nelson ([51]). Much emphasis has been put on the bivariate case and in [32] and [51] many examples of bivariate copula families are given. However the class of multivaria...

متن کامل

A Copulas-Based Approach to Modeling Dependence in Decision Trees

This paper presents a general framework based on copulas for modeling dependent multivariate uncertainties through the use of a decision tree. The proposed dependent decision tree model allows multiple dependent uncertainties with arbitrary marginal distributions to be represented in a decision tree with a sequence of conditional probability distributions. This general framework could be natura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Marketing Science

دوره 30  شماره 

صفحات  -

تاریخ انتشار 2011